Please login first
Alessandro Deplano     Other 
Timeline See timeline
Alessandro Deplano published an article in November 2016.
Top co-authors
Jan Balzarini

70 shared publications

KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven B-3000, Belgium

Valentina Onnis

49 shared publications

Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze Farmaceutiche, Farmacologiche e Nutraceutiche, Università degli Studi di Cagliari, Via Ospedale 72, Cagliari I-09124, Italy

Sandra Liekens

33 shared publications

KU Leuven—University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven B-3000, Belgium

Salvatore Pacifico

11 shared publications

Dipartmento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, Ferrara I-44121, Italy

Monica Demurtas

1 shared publications

Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze Farmaceutiche, Farmacologiche e Nutraceutiche, Università degli Studi di Cagliari, Via Ospedale 72, Cagliari I-09124, Italy

12
Publications
55
Reads
22
Downloads
25
Citations
Publication Record
Distribution of Articles published per year 
(2014 - 2018)
Total number of journals
published in
 
8
 
Publications See all
Article 0 Reads 3 Citations Homology modeling of a Class A GPCR in the inactive conformation: A quantitative analysis of the correlation between mod... Stefano Costanzi, Matthew Skorski, Alessandro Deplano, Brett... Published: 01 November 2016
Journal of Molecular Graphics and Modelling, doi: 10.1016/j.jmgm.2016.10.004
DOI See at publisher website PubMed View at PubMed ABS Show/hide abstract
With the present work we quantitatively studied the modellability of the inactive state of Class A G protein-coupled receptors (GPCRs). Specifically, we constructed models of one of the Class A GPCRs for which structures solved in the inactive state are available, namely the β2 AR, using as templates each of the other class members for which structures solved in the inactive state are also available. Our results showed a detectable linear correlation between model accuracy and model/template sequence identity. This suggests that the likely accuracy of the homology models that can be built for a given receptor can be generally forecasted on the basis of the available templates. We also probed whether sequence alignments that allow for the presence of gaps within the transmembrane domains to account for structural irregularities afford better models than the classical alignment procedures that do not allow for the presence of gaps within such domains. As our results indicated, although the overall differences are very subtle, the inclusion of internal gaps within the transmembrane domains has a noticeable a beneficial effect on the local structural accuracy of the domain in question.
Article 0 Reads 1 Citation Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita Kodjo Eloh, Monica Demurtas, Manuel Giacomo Mura, Alessandro... Published: 09 June 2016
Journal of Agricultural and Food Chemistry, doi: 10.1021/acs.jafc.6b02250
DOI See at publisher website PubMed View at PubMed
Article 3 Reads 4 Citations Design, Synthesis and Evaluation of Antiproliferative Activity of New Benzimidazolehydrazones Valentina Onnis, Monica Demurtas, Alessandro Deplano, Gianfr... Published: 30 April 2016
Molecules, doi: 10.3390/molecules21050579
DOI See at publisher website PubMed View at PubMed ABS Show/hide abstract
The synthesis and antiproliferative activity of new benzimidazole derivatives bearing an hydrazone mojety at the 2-position is described. The new N′-(4-arylidene)-1H-benzo[d]imidazole-2-carbohydrazides were evaluated for their cytostatic activity toward the murine leukemia (L1210), human T-cell leukemia (CEM), human cervix carcinoma (HeLa) and human pancreas carcinoma cells (Mia Paca-2). A preliminary structure-activity relationship could be defined. Some of the compounds possess encouraging and consistent antiproliferative activity, having IC50 values in the low micromolar range.
Article 0 Reads 1 Citation Interaction of the N-(3-Methylpyridin-2-yl)amide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selec... Jessica Karlsson, Carmine M. Morgillo, Alessandro Deplano, G... Published: 13 November 2015
PLOS ONE, doi: 10.1371/journal.pone.0142711
DOI See at publisher website PubMed View at PubMed ABS Show/hide abstract
Combined fatty acid amide hydrolase (FAAH) and cyclooxygenase (COX) inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here. FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAHT488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R)- and (S)-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively), whereas the (S)-enantiomer of Ibu-AM5 (IC50 0.59 μM) was more potent than the (R)-enantiomer (IC50 5.7 μM). Multiple inhibition experiments indicated that both (R)-Flu-AM1 and (S)-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R)-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH. The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors.
Article 0 Reads 2 Citations In Vitro Nematicidal Activity of Aryl Hydrazones and Comparative GC-MS Metabolomics Analysis Kodjo Eloh, Monica Demurtas, Alessandro Deplano, Alvine Ngou... Published: 10 November 2015
Journal of Agricultural and Food Chemistry, doi: 10.1021/acs.jafc.5b04815
DOI See at publisher website PubMed View at PubMed
Article 0 Reads 7 Citations Characterisation of (R)-2-(2-Fluorobiphenyl-4-yl)-N-(3-Methylpyridin-2-yl)Propanamide as a Dual Fatty Acid Amide Hydrola... Sandra Gouveia-Figueira, Jessica Karlsson, Alessandro Deplan... Published: 25 September 2015
PLOS ONE, doi: 10.1371/journal.pone.0139212
DOI See at publisher website PubMed View at PubMed ABS Show/hide abstract
Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known. COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM). Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.
Conference papers
CONFERENCE-ARTICLE 24 Reads 0 Citations Discovery of novel endocannabinoid level modulators by modification of old analgesic drugs Alessandro Deplano, Monica Demurtas, Valentina Onnis Published: 31 October 2018
doi: 10.3390/ecmc-4-05590
DOI See at publisher website ABS Show/hide abstract

Fatty acid amide hydrolase (FAAH) is a serine hydrolase that catalyzes the deactivating hydrolysis of the fatty acid ethanolamide family of signaling lipids, which includes anandamide (AEA), an endogenous ligand for cannabinoid receptors. Endogenous FAAH substrates such as AEA serve key regulatory functions in the body and have been implicated in a variety of pathological conditions including pain, inflammation, sleep disorders, anxiety, depression, and vascular hypertension, and there has been an increasing interest in the development of inhibitors of this enzyme.
Different structural classes of FAAH inhibitors have been reported including alpha-ketoheterocycles, (thio)hydantoins, piperidine/piperazine ureas, and carbamate derivatives. When tested, these compounds have been shown to be efficacious in models of inflammatory, visceral, and in some cases
neuropathic pain without producing the central effects seen with directly acting cannabinoid receptor agonists. An intriguing aspect of FAAH inhibition is that some currently marketed nonsteroidal anti-inflammatory drugs (NSAIDs) have also been shown to be weak inhibitors of FAAH, but can be used as a template for the design of more potent compounds. However, structure–activity relationships of analogues of clinically used NSAIDs with respect to FAAH inhibition have been examined scarcely in the literature. These findings led us to design and synthesis of new series of FAAH inhibitors derivable from conjugation of heterocyclic structures with NSAIDs as profens, fenamates, and new their correlate molecules. In this keynote we report on the synthetic pathways to transform old analgesic drugs into FAAH inhibitors and SAR studies on the new inhibitor series.

CONFERENCE-ARTICLE 28 Reads 0 Citations Field-based virtual screening: New trends to increase the chemical diversity of your leads Alessandro Deplano, Javier Vázquez, Albert Herrero, Enric Gi... Published: 31 October 2018
doi: 10.3390/ecmc-4-05589
DOI See at publisher website ABS Show/hide abstract

Computational chemistry methods can significantly reduce experimental costs in early stages of a drug development project by filtering out unsuitable candidates and discovering new chemical matter. Molecular alignment is a key pre-requisite for 3D similarity evaluation between compounds and pharmacophore elucidation. Relying on the hypothesis that the variation in maximal achievable binding affinity for an optimized drug-like molecule is largely due to desolvation, we explore herein a novel small molecule 3D alignment strategy that exploits the partitioning of molecular hydrophobicity into atomic contributions in conjunction with information about the distribution of hydrogen-bond donor/acceptor groups in each compound. A brief description of the method, as implemented in the software package PharmScreen, is presented. The computational procedure is calibrated by using a dataset of 402 molecules pertaining to 14 distinct targets taken from the literature and validated against the CCDC AstraZeneca test set of 121 experimentally derived molecular overlays. The results confirm the suitability of MST based-hydrophobic parameters for generating molecular overlays with correct predictions obtained for 100%, 93%, and 55% of the molecules classified into easy, moderate and hard sets, respectively. The potential of this tool in a drug discovery campaign is then evaluated in a retrospective study with the aim to evaluate the correlations between activities and similarity score of a series of sigma-1 receptor ligands. The results confirm the suitability of the tool for Drug Discovery purposes finding the 67% of the most active ligands (≤10 nM) in Q1 of the ranking and the most active compound in position five.

Top